19 research outputs found

    Flexible HW-SW design and analysis of an MMT-based MANET system on FPGA

    Get PDF
    Recently there has been a rapid growth of research interests in Mobile Ad-hoc Networks (MANETs). Their infrastructureless and dynamic nature demands that new strategies be implemented on a robust wireless communication platform in order to provide efficient end-to-end communication. Many routing algorithms have been developed to serve this purpose. This thesis investigated Multi-Meshed Tree (MMT) algorithm, an integrated solution that combines routing, clustering and medium access control operations based on a common multi-meshed tree concept. It provides the robustness and redundancy inherent in mesh topologies and uses the tree branches to deliver packets. MMT is the first of its kind that enables a single algorithm to form multiple proactive routes within a cluster while supporting reactive routes between different clusters. Recent published research and simulations have shown its favorable features and results. To explore the MMT algorithm\u27s novel feature in real systems against simulation work, this work adopts Field Programmable Gate Arrays (FPGA) as the platform for wireless system implementations. Full hardware and various System-on-Chip Hardware-Software designs are developed and studied, providing a design practice that contributes to low-cost system development in the field of MANET by utilizing the evolving FPGA technology. The results show that the MMT-based systems functioned accurately and effectively; in all proposed test scenarios they demonstrated many of the features that a desired MANET routing algorithm should have: high transmission success rate, low latency, scalability, few queued packets and low overhead. The results give valuable insights into the MMT algorithm\u27s performance and facilitate its future improvements

    A Simple SERS-Based Trace Sensing Platform Enabled by AuNPs-Analyte/AuNPs Double-Decker Structure on Wax-Coated Hydrophobic Surface

    Get PDF
    In this work, a simple and versatile SERS sensing platform enabled by AuNPs-analyte/AuNPs double-decker structure on wax-coated hydrophobic surface was developed using a portable Raman spectrometer. Wax-coated silicon wafer served as a hydrophobic surface to induce both aggregation and concentration of aqueous phase AuNPs mixed with analyte of interest. After drying, another layer of AuNPs was drop-cast onto the layer of AuNPs-analyte on the substrate to form double-decker structure, thus introducing more “hot spots” to further enhance the Raman signal. To validate the sensing platform, methyl parathion (pesticide), and melamine (a nitrogen-enrich compound illegally added to food products to increase their apparent protein content) were employed as two model compounds for trace sensing demonstration. The as-fabricated sensor showed high reproducibility and sensitivity toward both methyl parathion and melamine detection with the limit of detection at the nanomolar and sub-nanomolar concentration level, respectively. In addition, remarkable recoveries for methyl parathion spiked into lake water samples were obtained, while reasonably good recoveries for melamine spiked into milk samples were achieved. These results demonstrate that the as-developed SERS sensing platform holds great promise in detecting trace amount of hazardous chemicals for food safety and environment protection

    Binder-free graphene foams for O2 electrodes of Li-O2 batteries

    No full text
    We report a novel method to prepare bind-free graphene foams as O2 electrodes for Li–O2 batteries. The graphene foams are synthesized by electrochemical leavening of the graphite papers, followed by annealing in inert gas to control the amount of structural defects in the graphene foams. It was found that the structural defects were detrimental to the processes of the ORR and OER in Li–O2 batteries. The round-trip efficiencies and the cycling stabilities of the graphene foams were undermined by the structural defects. For example, the as-prepared graphene foam with a high defect level (ID/IG = 0.71) depicted a round-trip efficiency of only 0.51 and a 20th-cycle discharge capacity of only 340 mA h g−1 at a current density of 100 mA g−1. By contrast, the graphene foam electrode annealed at 800 °C with ID/IG = 0.07 delivered a round-trip efficiency of up to 80% with a stable discharge voltage at 2.8 V and a stable charge voltage below 3.8 V for 20 cycles. According to the analysis on the electrodes after 20 cycles, the structural defects led to the quickened decay of the graphene foams and boosted the formation of side products

    Effect of spherical Al-Mg-Zr on the combustion characteristics of composite propellants

    No full text
    In this work, spherical Al-Mg-Zr alloy with intensive heat release were characterized and compared to neat Al powders. The morphology, element distribution and thermal performance were characterized by TEM, SEM, Mapping and TG-DSC. The laser-induced ignition and combustion characteristics of Al-Mg-Zr alloy powders were performed by microscopic high-speed video-recording. The effect of Al-Mg-Zr on the combustion process of HTPB-based solid propellants were carried out as well. It was observed that, the energy release process of Al-Mg-Zr is accompanied by the phenomena of gas emission and microexplosion, which is useful for improving the combustion efficiency of the alloy and reducing the combustion product particles of solid propellants. The findings in this work validate the potential of Al-Mg-Zr as an additional fuel for high aluminum content solid propellants

    Celastrol suppresses tumor cell growth through targeting an AR-ERG-NF-κB pathway in TMPRSS2/ERG fusion gene expressing prostate cancer.

    Get PDF
    The TMPRSS2/ERG (T/E) fusion gene is present in the majority of all prostate cancers (PCa). We have shown previously that NF-kB signaling is highly activated in these T/E fusion expressing cells via phosphorylation of NF-kB p65 Ser536 (p536). We therefore hypothesize that targeting NF-kB signaling may be an efficacious approach for the subgroup of PCas that carry T/E fusions. Celastrol is a well known NF-kB inhibitor, and thus may inhibit T/E fusion expressing PCa cell growth. We therefore evaluated Celastrol's effects in vitro and in vivo in VCaP cells, which express the T/E fusion gene. VCaP cells were treated with different concentrations of Celastrol and growth inhibition and target expression were evaluated. To test its ability to inhibit growth in vivo, 0.5 mg/kg Celastrol was used to treat mice bearing subcutaneous VCaP xenograft tumors. Our results show Celastrol can significantly inhibit the growth of T/E fusion expressing PCa cells both in vitro and in vivo through targeting three critical signaling pathways: AR, ERG and NF-kB in these cells. When mice received 0.5 mg/kg Celastrol for 4 times/week, significant growth inhibition was seen with no obvious toxicity or significant weight loss. Therefore, Celastrol is a promising candidate drug for T/E fusion expressing PCa. Our findings provide a novel strategy for the targeted therapy which may benefit the more than half of PCa patients who have T/E fusion expressing PCas

    Effects of Slag Composition and Impurities of Alloys on the Inclusion Transformation during Industrial Ladle Furnace Refining

    No full text
    The inclusion of the MgO·Al2O3 (MA) spinel and CaO–Al2O3 are occasionally observed during the refining of Al–killed steel, even without the intentional additions of Ca and Mg. Many studies have focused on the source of Mg and Ca; however, especially for the formation of CaO–Al2O3–type inclusions, some recent results showed that Ca was difficult to dissolve from refining slag, even when the Al content in molten steel was high. To confirm these differences, industrial experiments were designed in this study, and the effects of the FeO and MnO contents, as well as the impurities of the alloying materials, were discussed. The results showed that, when the FeO and MnO contents in slag were high (about 10 mass%) at the start of LF (ladle furnace), all inclusions remained as Al2O3, despite alloying. Using the slag with low FeO + MnO content (<1~2 mass%), the Al2O3 inclusions changed to the MA spinel, but CaO–Al2O3 inclusions were not observed, indicating that CaO–Al2O3 inclusions were difficult to form by the steel/slag reactions under the current conditions. Only for the molten steel that contained a low level of dissolved oxygen and a large amount of Fe–Si, which contained Ca as the impurity was added, CaO–Al2O3 inclusions were generated

    Green Extraction of Phenolic Compounds from Lotus (Nelumbo nucifera Gaertn) Leaf Using Deep Eutectic Solvents: Process Optimization and Antioxidant Activity

    No full text
    Natural deep eutectic solvents (NDESs) were used to extract flavonoids and polyphenols from lotus (Nelumbo nucifera Gaertn.) leaves at the same time, and the extraction process was optimized to provide reference for the effective development and utilization of lotus leaves. The deep eutectic solvents (DESs) with the highest yield of flavonoids and polyphenols were screened out from 19 different NDES combinations. The response surface method was employed to optimize the extraction process. After a rational design, a lactic acid/glycerol (molar ratio 1:2) DES was chosen as the optimal extraction solvent, and the optimum extraction parameters were as follow: water content (29%), liquid-solid ratio (37:1 mL/g), extraction time (61 min), and extraction temperature (53 degrees C). Compared with traditional water extraction or ethanol extraction, it improved the yield of flavonoids (126.10 mg/g) and polyphenols (126.10 mg/g). By LC-MS analysis, 19 flavonoids or organic acid compounds with known compound structural formulae were identified in the DES extract of lotus leaves. By comparing the free radical scavenging ability and total reducing ability, the extraction of lotus leaves using the NDES method was superior to both ethanol extraction and water extraction. It is a green, environmentally friendly, and efficient extraction method for antioxidants from leaves of Nelumbo nucifera Gaertn
    corecore